l*;h

NASA TT F-23

[ e

NASA TT F-23

SURFACE DISTURBANCES IN MAGNETOHYDRODYNAMICS

By S. I. Syrqvatskiy

Translation of "Nekotoryye svoystva poverkhnostey razryva v magnitnoy
gidrondinamike," a dissertation submitted for the degree of
Candidate of Physical and Mathematical Sciences at the
P. N. Lebedev Institute of Physics of the Academy
of Sciences of the USSR, November 27, 1954

‘SPACE ADMINISTRATION
May 1960

NATIONAL AERONAUTICS AN
WASHINGTON







1A

N O

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL TRANSLATION F-2%

SURFACE DISTURBANCES IN MAGNETOHYDRODYNAMICS*

By S. I. Syrovatskily
INTRODUCTION

The subject of magnetohydrodynamics deals with the study of laws governing the motion of
electrically conducting liquid or gaseous media through an electromagnetic field. (For the study
of gaseous medla the term "magneto-gasodynamics" is frequently employed. )

The classic equations of hydrodynamics and electrodynamics are used as a starting point in
the definition of magnetohydrodynamic laws. The interest in this field of studies arose only a
few years ago as a result of increasing availability of data on solar atmosphere processes and
also in connection with investigations on the origin of cosmiec rays. Results of these investiga-
tions led to the conclusion that extensive electromagnetic fields play an essential role in the dy-
namics of stellar atmospheres and in phenomena occurring In Interstellar space. In the mean-
time many more phenomena have been observed whose interpretation requires the assumption of
the existence of extensive cosmic magnetic fields. At the present time, the concept of such fields
is successfully employed in the explanations of the origins of cosmic radiation, polarization of
-light of distant stars, etc.

Recent observations do not provide direct interstellar magnetic field data, and therefore all
conclusions are based on the general laws of motion of a conducting medium in an electromagnetic
field. Thus, it becomes necessary to develop a theory of magnetohydrodynamic motion. More-
over, such a theory is indispensable for understanding motion in both stellar and solar atmos-
pheres. The latter, a highly conducting atmosphere, contains strong magnetic flelds which sub-
stantially affect the character of magnetohydrodynamic motion.

The theory of magnetohydrodynamic motion may be formulated as astrictly theoretical prob-
lem, independent of its practical applications, and based on two divisions of physics, 1.e. hydro-
dynamics and electrodynamics. It appears that motion of a conducting fluld in a magnetic field
is characterized by a number of properties which are manifested the more distinctly, the more
conducting the fluid. It is known that magnetic fields cannot instantaneously penetrate or "e-
merge' from a conductor. This is due to the presence of induction currents which impede any
change of the field. In most applications of magnetohydrodynamics, the conductivity of the
med{um is large and the currents are attenuated slowly; as a result of this, the magnetic field
appears to be "frozen" in the medium for prolonged periods of time. If, at the same time, the
medium is in hydrodynamic motion, then the field is deformed with the medium. The magnetic
flux through any surface formed in the moving medium will, of course, be retained. The medium
in the magnetic field becomes actually anisotropic, i.e. lateral motion does not cause any changes
in the field and occurs as in ordinary hydrodynamics. However, transverse motion causes de-
formation of the field with the accompanying transformation of the kinetic energy of the fluid into
magnetic energy, or vice versa. Such transformations evolve a number of new effects which are
10t encountered in ordinary hydrodynamics.

Fundamental works in the field of magnetohydrodynamics are presented in Ref. [1]. Never-
heless, due to the complexity of the system of magnetohydrodynamic equations, investigation of
he dynamics of conducting mediais very far from completion. In particular, serious difficulties
ire encountered in the solution of the fundamental problem of magnetohydrodynamic turbulence,
nd hence there is an absence of a quantitative explanation of turbulence in a magnetic field. The
wbove discussion points out the imperative necessity for further investigation of the subject.

The present work is devoted to the study and explanation of characteristics of surface dis-
turbances in magnetohydrodynamics. Unusual "transient” disturbances are described. The
latter exist during continuous transitions from one type of disturbance to another. Primary con-
sideration, however, is given to the problem of stability of tangential disturbances. The problem
is of considerable interest since it affords the possibility of explanation of stable and sharply
defined streams, in the form of jets, bands, etc., which are observed in the atmosphere of the
sun and which are difficult to explain in terms of ordinary hydrodynamics.

*Transiation of "Nekotoryye svoystva poverkhnostey razryve v
magnitnoy gidrondinamike,” a dissertation submitted for the degree of
Candidate of Physical and Mathematical Sciences and defended at the
P. N. Lebedev Institute of Physics of the Academy of Sciences of the
USSR, November 27, 1954. Originally published in Trudy Fizicheskogo
Instituta Akademii Nauk SSSR (Transactions of the Institute of Physics
of the Academy of Sclences of the USSR), vol, 8, 1956, pp. 13-6kL.



In addition, investigation of the stability of tangential cisturbances is important for the de-
velopment of a quantitative explanation of the characteristics of magnetohydrodynamic turbulence.
Turbulent motion is developed as a resu't of instability o laminar flow ot a liquid or gas. In
fully developed turbulent flow, there exists a continuous transfer of energytrom larger to smaller
components of the stream. The energy is finally dissipated in the smallest eddies. Instability
of large eddies leads to their breakdown into smaller, also unstable eddies, which in turn break
down into even smaller vortices, etc. This process continues until the viscosity of the stream
prevents the occurrence of any further motion. From a theoretical point of view, the energy
transfer from larger to smaller stream components is described by the non-linear terms in hy-
drodynamic equations, i.e. those terms which cause the instability in laminar flow. Thus, flow
instability appears to be the determining factor in both the development and further course of
turbulence. It is therefore of interest to investigate the stability of motion in magnetohydro-
dynamics.

Tangential disturbances represent the limiting case of flow with a continuously changing
velocity gradient. The smoothing of the velocity profile results, of course, in the increase of
stability. Therefore, in order to establish the pogsibility of existence of unstable flow in magne-
tohydrodynamics, it is only natural to limit the investigation to a simple case of tangential dis-
turbance. Ouantitative explanation of the stabilizing action of the magnetic field as contained in
this solution has a number of advantages, such as simplicity and minimum number of assump-
tions. Those were absent in the work of previous investigators (Refs. (2] and [3] ), who studied
flow stability between rotating cylinders and between parallel planes using the method of asymp-
totic theory of stability with many limiting assumptions. Moreover, an approach similar to the
method presented herein may be extended to the case of a compressible medium which is of par-
ticular importance for practical applications.

The results obtained in Sections 5 and 6, below, verify that a sufficiently strong magnetic
field stabilizes tangential disturbances in both compressille and incompressible media. Min-
imum values of the stabilizing field are determined in order of importance by densities of the
magnetic and kinetic energies with respect to the moving medium. This represents one of the
essential distinctions from ordinary hydrodynamics, where rangential disturbances are absolutely
unstable. As applied to the theory of magnetohydrodynami: turbulence, the result shows that in
the presenceof a magnetic field, normal turbulent energy transferis disrupted under all degrees
of turbulence. The average kinetic energy of the stream may be equal to or less than the average
energy of the stabilizing magnetic field. Therefore, extensiin of the theoretical methodof locally
isotropic turbulence to magnetohydrodynamic turbulence, as attempted in Refs. [4]- [6]), re-
quires additional substantiation.

The stability of tangential disturbances and solutions of steady state magnetohydrodynamic
equations, as presented in Section 9, indicate the possibility of existence of stable flow of the
medium along an arbitrary magnetic field. Such flow, characterized by individual streams or
jets, should under normal conditions become turbulent within a short period of time. This result
is utilized in Section 10 in the interpretation of some chz racteristics of motion of solar pro-

tuberances.

SECTION 1. MAGNETOHYDRODYNAMIC EQUATIONS

The liquid or gaseous medium is considered to be continuous, i.e. it is assumed that the
mean free path ! of particles of the medium is considerably smaller than the characteristic
dimension L of the phenomenon:

]
<t (1)
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Therefore, hydrodynamic equations may be used to describe motion of the medium. These
equations have to be modified by the volumetric electromagnetic force f, :

a
p[—a—':—+(vV)vj=fe—Vp+nV’v+(C+%)gmddivv; (2)
dp di
5; T divev =90, (3)
where v = velocity of medium,
p = density of medium,
p = pressure,
n = viscosity,

¢ = secondary coefficient of viscosity.

The force f, expresses the action of the electromagnetic field on the charge and current of the
medium:

f.=poE+ -1 jH], (4)

where p, = density of electric charge,
J current density,
vector of electric field,
H = vector of magnetic field,
¢’ = velocity of light.

The electromagnetic field is determined by the Maxwell equations and depends upon the charge
and current of the moving medium (. = 1, ¢ = const):

_ 4x ¢ 3E
rot H = ——J+ = 5
rot E — — L 9H
¢’ at ! (5)
divH =0,
divE = i"—p
z [ 2
It is assumed that Ohm's law can be applied, and thus the current density will be equal to:
1
j=0e”+°(E+7[”H1)- (6)

The first term of the above corresponds to the convection current and the second to the
conduction current, since the charges in the field are acted upon by E' = F + —:— [vH]. Con-

ductivity o is considered to be a constant scalar quantity. The above assumption is correct
if the radius of curvature R of the trajectory of electrons in the magnetic field is longer than

the mean free path of the electrons [, . Since R = '::{c , where u = thermal velocity of

electrons, then the conductivity may be considered isotropic, if:

eH |
_77==0H‘:<1, ™
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where @, = Larmor frequency,
¢ = average time of free path of electrons.

When the above condition cannot be satisfied, as occurs with a highly rarefied medium in a
strong magnetic field, then the conductivity may be considered anistropic (Refs. [7] and [8]);
i.e. the value of conductivity will not change along the fielc, while it will decrease across the
field 1 4 w?*® times. By elimination of § and E from equations (5) and (6), we obtain:

apc
ot

4ro
€

+ divpyv = —

b, — — div [vH]. (8)

Equation (8) shows that relaxation time of the charge is in the order of ¢ /o . The following
condition is considered to be fulfilled here:

4o,
> (9)

where V = characteristic velocity of the medium.

Condition (9) permits the convection and displacement currents to be neglected in comparison
with the conducting currents! - which is usual in the study of electromagnetic processes in con-
ducting media. Substituting equation (9) in equations (8) and '5), we get:

P,=—4i,‘diV[—”7 H]; (10)

[
—_ C’ tH
J =gz oL H. (11)
Substitution in equation (6) yields:
1 ¢’ v . v
E=——[vH|+ m(rot H. —e—div [-c—, HD

The second term in parentheses is in the same order of magnitude as the quantity »?/¢"?,
in comparison with the first term. Since macroscopic veloc:ties of the medium, even in cosmic
conditions, are small in comparison with the velocity of ligat, an accurate non-relativistic ap-
proximation can be employed by neglecting terms having the order of magnitude ofv2 [¢’2. Here,

1 c’
E——'zr[vIl]-Fert}[. (12)
Also, the same approximation can be used in equation (4). ~"hus, using equation (11) yields:
f,=%[rotH-H]. (13)

lﬂigh frequency electromagnetic processes, for which w zx o 'ec, are not considered here.
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Using above assumptions, the system of equations for a liquid of high conductivity in an
electromagnetic field assumes the following form:

oH c't )
'—a? —rot [‘UHI = ang VZH,
9 1 i
§§+wwv=——Vp~—ﬂH¢mH]+
y (14)
+ iy o — (C + = )grad divv;
—E’--}—dinv:O; div H = 0. )

The system of equations (14) does not contain terms describing charge density, current den-
sity, and intensity of the electric field. These may be determined from equations (10) to (12).
Thus, the dynamics of a conducting medium in an electromagnetic field can be fully determined
by interaction between the magnetic and the velocity fields which is expressed {>y equations
(14). For this reason, the term "magnetohydrodynamics' has been adopted to describe this
phenomenon.

In cases where the compressibility of the medium cannot be neglected, equations (14) have
to be augmented by the following equation of the state of the medium:

p=pe 7). (15)

Equations (14) and (15) contain two vector and two scalar equations for the quantities
v, H, p, p, T and must be augmented by another equation. The additional equation expresses
the law of conservation of energy in the system. Since the total energy of a unit volume of the
medium is equal to:

2 Hs3
et 5, (16)

where € = the thermal energy of the unit mass, then the equation of the conservation of energy
will assume the following form:

g,(‘;l +pe + 5 >=——divg. (17)

The energy density ¢ consists of the following terms: density of hydrodynamic energy flux
pv (v%/2 4 w),where w = the thermal function of unit mass of electromagnetic energy flux, which

is expressed by the Umov-Poynting vector —4— (EH} ; the energy flux — (ve’),associated with
the processes of internal friction, where

, A, 0v), 2 dy v,
°‘-k—"l<'ﬁ+a—,!—73ik3—ﬂ-)+im 7%, (18)

(equation (18) represents the "'viscous" tensor of intensity); and finally the thermal flux — xV7 ,
where x = coefficient of thermal conductivity. Thus:

g = (5 +v)+ 5 (EH] — (vo') — <VT.



Substituting equation (12) for the energy term, we get:
2 1
g=p(5+ w) + 4 (H[H) — £ (H vt H) — (vor) — VT, (19)
where

c'?

ﬁ= 4no ° (20)

The third term of the right-hand side of equation (19) expresses the energy flux associated with
the thermal and electrical losses.

Equation (17) may be transformed by the use of equations (14) into a heat transfer equation:

o,

o (G +v9S) = gt + £ (rot H)P 4 div VD), (21)

where § = the entropy per unit mass. This equation shows that the change of quantity of heat in
a moving element of volume (d@ = p7 d5) isdetermined by viscosity, energy losses, and thermal
conductivity.

The investigated system actsaccording to the law of conservation of matter (3) and the law of
conservation of impulse, which may be described according to equations (14) and (18) as follows:

Ipy; Oxy,
ot T T ez, (22)
where the tensor of impulse flux density is
1 ’ll"; ,
ik = Plix + pvivk + o (T ik — }’in) — Tix. (23)

Thus, equations (14) and (21) describe the macroscopic motion of the conducting medium in
an electromagnetic field, and assume the absence of conve:tion and displacement currents. The
latter assumption is true for electromagnetic processes in a highly conductive medium. The
conditions of application of magnetohydrodynamic equatiois are expressed by inequalities (1),
(7), and (9).

It follows from equations (14)that the influence of viscisity is characterized, as in ordinary
4
hydrodynamics, by the Reynolds number R = -pn—L (where p, V,and L are characteristic for

a given problem and describe the density, velocity, and linear dimension of the system). The
relative function of dissipation of the magnetic field due to energy losses may be expressed by
the following number R,, = 4";,"V, which represents the magnetic analogue of the Reynolds num-
ber. The studies of Ref. [8] show that in most astrophys:cal applications of magnetohydrody-
namics, the values of K and R,, are so high that the terms for viscous dissipation and electric
losses in the medium may be neglected in equations of motion without any loss of accuracy; i.e.
the medium can be considered an ideal liquid with an infinite conductivity.
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For an ideal medium the system of equations will be expressed:
oH

-5 =rot [vH|;
div H = 0;
dv i 1
— + WV v=——Vp— —_ :
5 + (vV) o VP — 4o [H rot HJ: (24)
de .
5t divpr = 0;
s
5+ vvS =0. J
It is assumed that the equation of state of the medium is known.
It is convenient to describe equations (24) in the form of laws of conservation:
dpv,; oy )
B T T 61‘“
a r2 H? .
(e )= —ang
a .
§%= — divpr; ( (25)
oH
20 =Tot [vH )
div il =0,
where
1 Iz .
nix = PO + pvivk + ?F(T Bux — Hi”k), (26)
v? 1

The first three equations in equations (25) express the laws of conservation of impulse, en-
ergy, and mass respectively. Thefourth equation expresses the laws of conservation of magnetic
field in a "fluid" surface that is moving together with the medium. Actually, the change of the
flow of vector H through such a surface is determined by expression (10):

a‘f—gg HdS =SS{36—7+vdivH— rot [vH]}dS.
(8 (S)

where the integration is made along the liquid surface. Thus, according to equations (25),
d
s \\Has =0 (28)

The above relationship is characteristic for magnetohydrodynamics by depicting the force
lines of the magnetic field contained in the medium. The number of those lines in anarbitrarily
moving fluid particle will, however, remain unchanged.



SECTION 2. CLASSIFICATION OF MAGNETOHYD)RODYNAMIC DISTURBANCES

As in ordinary hydrodynamics, the magnetohydrodyr.amic equations for an ideal medium
(n = =x =0, 3 = o0) allow discontinuous solutions, where velocity, tension, or intensity
of the magnetic field and other surface quantities experien:e step changes. In order to establish
the conditions which would satisfy the solution on such surfaces, it is simple to use the laws of
conservation expressed by equations (25).

A system of coordinates is chosen where the investigated element of a surface disturbance
is immobile:
Let n = the vector of the normal to the surface disturbance, and

<~ = an arbritrary vector in the tangential plane.

It follows directly from equations (25) that the following boindary conditions have to be satisfied:

(rd =00 (g} =01 (ow ) = 0,
(wH)) =0, (/1) =0. } (29)

In condition equations (29) and hereafter, the braces will denote the difference of quantities con-
tained therein on both sides of the surface disturbance. 7The meaning of conditions (29) is evi-
dent: the first three express the continuity of momentum, energy and mass fluxes; the next two
represent simple electrodynamic conditions of continuity of tangential and normal components of
the electric and magnetic fields, respectively. Therefore¢, with o = oo from equation (12), it
follows that:

E=—Ci,[vli]. (30)

If the r axis of the coordinate system is directed :long the normal to the surface, then
boundary equations (29) can be written as:

p+et+ =0

1
{pz*xrv — Z;HxHu} = (: {pu_,u, — ,‘—1" "IXH:} =0,

foos(p )4 L i) rdp=0, [ Gy

\
{prs} = 0; {H}) =G
{L'xilru _ I'U}Ix) = () {Uvgllz — vzH r} = 0.

Axes y and z. were selected as two independent direction;; of the vector 7 .

In ordinary hydrodynamics there are possible two muiually exclusive types of disturbances:
tangential and normal (shock wave). A continuous transition between these two types is impos-
sible. Therefore, during perturbation of surface distuibances, their classification will not
change and, as in ordinary hydrodynamics, will have real »hysical significance. The character-
istic features of magnetohydrodynamic disturbances are given below. With a continuous change of
the conditions of motion, any surface disturbance allowable by equations (31) can be transformed
into any other type, as will be shown later. Therefore, the type of classification of disturbances
used in ordinary hydrodynamics cannot be employed here. All disturbances are interrelated by
transitions and, in this sense, form one general type. Nevertheless, for the purpose of exped-
iency, a conditional classification of magnetohydrodynamic disturbances is presented. This
classification basically corresponds to the classification iatroduced in Ref. [11], which in turn
is based on external indications in the vicinity of the disturbance.
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Tangential disturbance. Analogous with ordinary hydrodynamics, surface disturbances with
an absence of normal component of velocity are included in this category, thus:

vy == 0. (32)

If the normal component of field H, differs from zero, then, according to equation (31), the
velocity, pressure, and magnetic field should be continuous. Such disturbance represents stable
boundary between two different media. It is assumed that

H.=0. (33)

In this case the magnetic field and velocity are parallel to the surface of the disturbance and
according to conditions (31) can undergo arbitrary changes of both magnitude and direction.
Step changes of pressure should be related to step changes of the intensity of magnetic field by
the following condition:

p+5}=0 (34)

Conditions (32) to(34) fully characterize the magnetohydrodynamic tangential surface disturbance.
Such surface disturbances are possible in incompressible as well as compressible media.

Perpendicular shock wave. Disturbances for which:

ve=0, H,=0, (35)

are classified as perpendicular shock waves. It follows from equations (31) that the tangential
component of velocity is continuous, or;:

{vy} =0, {v}=0, (36)
and that the tangential component of field intensity satisfies the following conditions:
{vxH )} =0, (v:H,;}=0. (37)

Conditions (36) and (37) permit the transformation to a system of coordinates where both sides
of the disturbance are:

vw=0, v,=0, H,=0. (38)

In this system of coordinates, and from conditions (31), (35), and (38), the boundary equations
for a perpendicular shock wave will have the following limits (v =v, H = H):

{i} =0; {pv}=0;

{%:+u’+ H’}=0, {p+Pvz+%:—}:0, (39)
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Surface disturbance of this type represents a longitucinal shock wave whose direction of
propagation is perpendicular to the direction of the magnetic field as shown in Figure 1. With
H =0, this is a simple shock wave. With H # 0, the magnetic field is diminishing the compres-
sibility of the medium and correspondingly enlarges the velocity of propagation of the surface
disturbance. The latter was listed in Refs. [12)] and [13].

y
#, f wl |

v, Y,

Fig. 1. Longitudinal shock wave.

The first of conditions (39) expresses the "attachment' of the magnetic field to the matter
of the medium: the quantity /f /p is preserved. The remaining equations will have the form

. H H?
=etg—, pPP=p+3 (40)

o

and will assume the form of simple equations for shock waves, where the energy and pressure
depend upon the intensity of the field according to formuiae (40). As shown by Kaplan and
Stanyukovich, Ref. [14], the problem of arbitrary unidimensional magnetohydrodynamic flow
through a perpendicular field can be reduced toa simple hydrodynamic problem with correspond-
ing changes in the equation of state. In particular, this pertiins to a perpendicular wave.

For the investigation of disturbances with
vy 0 and H,. 0, (41)

it is convenient to use a system of coordinates where the ve:tors v and H are parallel on one
side of the disturbance. When conditions (41) are satisfied, this is always possible. Actually it
is sufficient to change to a system of coordinates whose origin moves parallel to the surface dis-
turbance with the following velocity:

Y

x

The above equations hold true in cases where v and H are eqial to the velocity and intensity of the
field in the original system of coordinates. It follows from boundary equations (31) that in this
system of coordinates, vectors v and H will also be paraliel on the other side of the disturb-
ance. By indexing the two sides of the disturbance by numbers 1 and 2 where (z <0 and z™>0 ,
respectively), the condition may be written as:

vw=qH, v,=qH, (43)
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where q; and ¢, are coefficients of proportionality. In the selected system of coordinates, the
lines of flow of the liquid (gas) are parallel to the magnetic force lines and undergo similar
changes and breaks on the surface of the disturbance. It should be noted that for a perpendicular
shock wave, and also in general cases of tangential disturbances, the selection of a coordinate
system where the motion takes place according to conditions (43) is impossible.

With conditions (41) and (43), the boundary equations (31) assume the following form:

{p+ e+ 5o (H + HD}=0; {w+—"21} =0,
{pv,uy - = HxHy} —=0; {pv,v, ~— H,H,} =0 (44)
{pvs} = 0; {H:}=0.

From the above equations and relationships (43), the following equations may be formed:

{pg} = 0; (45)

1= k=05 (1= i) =0

Equations (44) and equations (45) and (46) assume two different types of motion depending on
whether there exists a continuity or a step-change of the density of the medium on the surface of
the disturbance.

Magnetohydrodynamic wave. It is assumed that despite conditions (41) the following condi-
tion of continuity of density is true:

{p} = 0. (47)

Equations (44) and (45) and condition (46) lead to the continuity of the normal velocity component
and of the coefficient of proportionality ¢ between vectors of the magnetic field and velocity:

{va} =0, {g} =0. (48)
Equations (46) may be reduced as follows:

(=) ) =05 (¢ —2) o} =0,

4mp 4rp

If at least one of the quantities {v,} or {r.} is other than zero, then:

1

q=j: V‘mp

(49)

Otherwise, in accordance with equations (43), (47), and (48), disturbance will be formed. Thus,
in magnetohydrodynamic waves, the velocity vector is related to the magnetic field vector by the
following relationships:

1 1

'Ulzit ——HHI, v, = % ’Turp

H,. (50)



In accordance with equations (44), (47), and (48), the following boundary equations will be satis-
fied on the surface: ¢

(= 0; {Hg) =0 ot
{s} =0; (p}=0;} oy
{p+ g+ 1Y} =0, (52)

the expression w = ¢+ p/p is used here as thethermal function per unit mass of the medium.

In accordance with conditions (51) and (52), the following note should be made. Since the
density and internal energy of the medium is equal on both ides of the disturbance, then other
thermodynamic quantities,such as pressure, should also be ejual. This means that for a medium
with a unique equation of state the following two conditions w:1l have to be satisfied:

{p}=0, {H,+ H}) =0, (53)

i.e. the surface disturbance, despite continuity of all thermodynamic quantities, can be charac-
terized by conditions (50) and by the continuity of normal components and absolute quantities of
velocity and intensity of the magnetic field. With known values of H, (and thus v, ), there are
possible values of H , (and thus v, ) which are located on z surface of a cone, the resultant of
which forms an angle with the normal equal to the angle of obiquity of vector A, . The charac-
ter of the motion in such a disturbance is shown on Figure 2.

ot

Fig. 2. Magnetohydrodynamic wave.

In Ref. [11], an analogous surface disturbance for a relativistic problem was called a
"Symmetric Shock Wave''.

In cases of incompressible fluids, where thermodynamic correspondences are not con-
sidered, conditions (53) do not follow from boundary equaticns. Tangential components of field
intensity and corresponding velocities may undergo arbitrary step changes related to step changes
of pressure by equation (52). This means that in an incompressible liquid, minute changes of
density and internal energy may lead to finite changes ir pressure. Therefore, conditions
{p} = 0 and {e} = 0 may be considered satisfied when the step-change of pressure is different
from zero and balances the difference of magnetic intensiy on both sides of the surface dis-
turbance.
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SURFACE DISTURBANCES IN MAGNETOHYDRODYNAMICS

The velocity of propagation of magnetohydrodynamic waves is determined directly by expres-
sions (50): since the normal component of velocity is continuous and equal to vn = &+ H./V 4np,
then relatively tothe medium the surface disturbance is propagated with the velocity F Ho/V 4np.

The chief characteristic of magnetchydrodynamic waves is the possibility of transmission
of a tangential momentum to the medium. This is due to the fact that the motion in general cases
is not planar. The solution to the problem of magnetohydrodynamic waves was first obtained by
Ref. [7].

Inclined shock wave. Disturbances of this type, despite conditions (41), are characterized
by the presence of step-change in density:

{p}+0. (54)

In addition the motion should be unidirectional, i.e. a transition to a system of coordinates may
be made where the motion takes place in surfaces (x, y) and

v, =0, Hp=0, 2.=0 H,=0. (55)
Rotation of the coordinate system about its x axis to give vz = 0, and therefore H;:=0, can

always be made. According to conditions (46), either vy, =0 or H,, = 0 leads directly to con-
ditions (55), since

s @R (56)

Z and g2 = (‘L are incompatible with conditions (45) and (54)).
P2 TPz

It follows from the last case of equations (46) that v,, = 0 and, therefore, H,,s =0, i.e. on one
side of the disturbance the tangential components of velocity and field intensity are generally

absent and the system of coordinates has to be selected so as to make Uy, =0 and H, =0.

(Simultaneous equations g2 =

In the selected system of coordinates according to conditions (55), the motion is charac-
terized as shown on Figure 3, and the boundary equations (44) may be brought to the following:

(p+en+ 52 =0 w2} =0,

A (57)
{Hx} =0; {pv} =0 {pv,vu— Z;H,Hv} = 0.

Yy

\f’\“

Y
N

Fig. 3. Inclined shock wave.



In disturbances of this type, the shock wave interacts in a complicated manner with the
magnetic field. The propagation velocity of an inclined shock wave depends not only on the de-
gree of compressibility, but also on the direction and magnitude of the magnetic field. The de-
pendence between parameters which determinethe state of tae medium prior to and after passing
of the shock wave was shown in Refs. [12] and [13].

In particular, when /, = 0 on both sides of the disturbance, and therefore vy =0, i.e. the
disturbance is propagated along the magnetic field, the latter does not influence the propagation
of the shock wave. This "parallel" shock wave may be described by simple hydrodynamic
equations:

(=0 {w+5}=0 p+etr=0 (58)

For a disturbance which follows the condition shown in €quation (56), the system of equations
(44) may be reduced to the following:

sz .
v)v=0; H1y=0; vzy=:t——ﬂ_..’;§’
fwt+5h=0 (=0 (H) =0; (59)
Pz”:y

P1+va12x=P2+P2v§x+ 7

and the flow is characterized as shown in Figure 4. One side of the surface, the tangential
components of magnetic field and velocity are absent and mo:ion takes place in the same manner
as in a parallel shock wave. On the other side of the distursance, motion is characterized by a
magnetohydrodynamic wave, where there is a possibility of :he existence of arbitrary tangential
components of the magnetic field and velocity.

Among the described surface disturbances, there is an absenceof flow of matter through the
surface, and therefore those are tangential surface disturbznces. Conversely, in disturbances
of the three following types, matter is transferred throug1 the surface or the disturbance is
propagated relatively to the medium. Therefore, such distirbances are called waves of.one or
another type. The velocity of propagation in the limiting case of disturbances of low intensity,
i.e. in a case analogous to the propagation of sound waves :n ordinary hydrodynamics, may be
found in Refs. [15] to [17].

It was shown that in an incompressible medium there are only two types of disturbances
possible: namely, the tangential and the magnetohydrodynamic wave.

¥
! —
Hy -
//, / v

Fig. 4. Disturbance according to:

1 1
3_ 2
= T q‘¢4ﬂ91'



SECTION 3. TRANSIENT DISTURBANCES 15

It can now be shown that in magnetohydrodynamics, transitions of surface disturbances of
one type into disturbances of another type are possible. It is sufficient to establish that there
are disturbances (called "transition" disturbances) that may be simultaneously classified in two
different types. Therefore, with the relatively small change of parameters, a change from one
to another neighboring type may occur. The transient disturbances may be found by direct com-
parison of the boundary equations which relate disturbances of two types. The values of parame-
ters, where the boundary conditions for two different types of disturbances correspond to each
other may determine the transition between two types. The possibility of the existence of a con-
tinuous transition between disturbances of two types will be investigated below.

Comparing conditions (32) to (34) with conditions (36) and (39) it is found that for a contin-
uous transition from a tangential disturbance to a perpendicular shock wave it is necessary to
have a disturbance that is characterized by continuous velocity and the following conditions:

(o o o e 280

i.e. the disturbance affects only the thermodynamic quantities and the tangential component of
the field intensity.

Such a disturbance, however, is impossible. The above conditi~ns require the continuity of three
independent functions of the three variables //,, p and ¢ . This means that the above variables
should be the same on both sides of the disturbance, i.e. the discontinuity is not present. Thus,
direct transition between a tangential disturbance and a perpendicular shock wave is impossible.

Comparison of equations (32) to (34) with conditions (50)to (52) shows that the disturbance satis-
fies the following conditions:

ve =0, H,.=0, {E}=Ov {p}=0v

] (60
fptit=0 m=xpun. ¥

The above applies to the transition between a tangential and a magnetohydrodynamic wave. As
noted, in a compressible medium, with pressure as a unique function of density and internal
energy, equations (60a) are equivalent to the following:

ve=0; H,=0; {e} =0, {p} =0; {p} =0

{ V+ } * {t}’ i'vz;p—

Thus, a continuous transition between a tangential disturbance and a magnetohydrodynamic wave
in an incompressible medium is possible if conditions (60a) are satisfied. For a compressible
medium, the same applies to conditions (60b).

In an inclined shock wave, the motion is planar and therefore the transition to it is possible
only from a planar tangential disturbance (v, =0, /#, = 0). Here, the condition of parallelism
of vectors v and H does not determine the coordinate system whichwas used for an inclined
shock wave {see equations (32), (33), and (42)]. Direct application of the original boundary con-
ditions, as shown in equations (31), must be made. These equations may be written as follows:
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[peit 2 =0

o2 H; {
{5 + v+ ot} = o HatvH )

prx{vy} = ‘Z;Hx{ﬂv}; va{’?}z Hy {vy}.

The above relationships must be fulfilled in an inclined shock wave up to and including
pvx =0and H,= 0. Excluding the latter, it will be found from the above three equations that
limiting relationships which have to be satisfied for a transition between a tangential an inclined
shock-wave are (assuming that v, =0 and H, = 0):

ve=H,=0; {p+ %%}:4);

H
{vy} = 41—,,{—;,1} {#.}; (61)
2 2

v H
{7"' +w+ '4"_:}{Hu} = {vy iy} {vy}.

It is easy to show that direct transition between a perpendicular shock wave and a magneto-
hydrodynamic wave is impossible. Such transition could tike place only when p = 0, but condi-
tions (39) show that in such a state disturbance cannot exisl.

The transition between perpendicular and inclined skock waves is always possible. Such
transition will be caused by the appearance or disappearance of the normal component of field
intensity. Thus, the perpendicular shock wave is simply a singular case of inclined shock wave.
The separation of these two types of waves into differen: categories may be justified by the
simplicity of the perpendicular shock wave and by the fact that in the case of a perpendicular
shock wave it is impossible to introduce a special coordinzte system, where vectors » and H
are parallel as in equation (43) and which is characteristic for inclined waves.

Finally the inclined shock wave, where the step-change of density approaches zero, changes
into a planar magnetohydrodynamic wave. Since the planar magnetohydrodynamic wave, in a
compressible medium, should satisfy the condition {Hi} =0, then either H, =H, or
H, = —H,, . In the first case all quantities are contiiuous and there is an absence of dis-
continuity.

Therefore, the transition discontinuity between inclined and magnetohydrodynamic waves is
represented by a planar "symmetrical"" discontinuity (shcwn in Figure 5) which satisfies con-
ditions (51) and (53):

(v} =0, HI=0; {&=0; {p}=0; {p}=0;

H (62)

v=-+ Hy,=—1,.

—_— ](—4x p R
In this all quantities are continuous with the exception of the tangential components of field and
velocity. The latter change their direction on the surface >f the disturbance.

In an incompressible liquid there are possible only two types of disturbances: tangential and
magnetohydrodynamic wave. Figure 6 shows the possibl: transitions between disturbances of
different types.
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Fig. 5. Planar symmetrical disturbance.

Tangential (60a) Magnetohydrodynamic
disturbance wave
(61) Inclined (62)

shock wave

Perpendicular

wave

Arrows indicate the direction of transition. Numbers inparentheses
indicate conditions which have to be satisfied during the transient.

Fig. 6. Possible transitions among disturbances of different types.

SECTION 4. PERTURBATIONS OF SURFACE DISTURBANCES

Boundary equations are derived to satisfy small perturbations of steady state surface dis-
turbances. Assume that a steady state surface disturbance, where z = 0 , assumes the follow-
ing form as a result of perturbation:

Oz, y,z, )=z —E(y, 3, 1) =0. (63)

A new set of coordinates is introduced, at an arbitrary point ¥, z of this surface. This new
system moves parallel to the origin along the x axis together with the arbitrary point on the
surface. Velocity and intensity of the magnetic field will be expressed in the new system by the
following relationships:

. 3 aE

vi=v—i, H =H, (64)
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where i is the only vector of the r axis. In this system o' coordinates, the element of the sur-
face is immobile (rotation of a small segment of the surface may be neglected) and the boundary
conditions will assume the following form [refer to equation (29)]:

{H 'n} = O; {pv'n} = {; {y'n} == (s |
{n;,..nk} =0; {[v"H" )~} =0; {{v L] =0 upu .- ¢ f (65)

In the above equations =, and ¢° are expressed by v"anc H° in an ordinary manner accord-
ing to formulae (26) and (27). Since the normal to the pertirbed surface equals:

n==V@= {l, %k —d—a},

Jy ! oz

and the following may be taken as the two independent tangeats

Ty 2{‘3‘5" 0,1},

then equation (65) may be rewritten as:
{H;—H;%_H:‘li} — )
bl g - )=
{g;—g; 3“5"“8; ?—5-} =0
{‘Ki.x - “i.u g—j —n ﬁ;} =0.

{tw sy, &+ mry) = 0

"

: (66)

{or i) 5+ e E) =
when zm ¢,

Referring to the original system of coordinates accord ng to equation (64), boundary equa-
tions for an arbitrarily deformed surface are easily obtainec.

It is further assumed that perturbation of the original steady state motion and corresponding sur-
face is small. In other words, the perturbation may be desc ribed by the following quantities:

v+v, H+h p+p,e+e, ... (67)

where v, H, p and ¢ are characteristic for steady state motion and satisfy boundary equa-
tions (31) on the surface when z =0, and v’, A, p’ and p’ are small perturbations which may
be neglected. Since the shift of the surface ¢ is a quantity o the same order of magnitude as the
perturbation, then boundary conditions may be applied to a plane where z = 0 instead of z = £ .
Using assumptions from equations (64) and (66) and substitut.on of expressions (67) and (3 1), the
following system of boundary conditions for perturbations m:y be derived:

VAl AN e
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{ha} =0; {pvn+pvs} = 0;

{(-2— + w4 %)pv;— 2 (VH) hna— - H (vh + Hv) +
+ vx [p’(lzz— + w) +p(1—){r’ ——v,% + w’) + 21—” (H}z)]} =0;
{# + 0% + puavs + vt + - (Hihy + H k) = 0; } (68)

{vavl + 0'0,2x + pos (vL + vz %5—) - % (Hehy + Huh,,)} =0;

{pvzv; + p'V2¥x + PV (v'z + vx %f—) — 7}; (Hxh, + H,h,.)} =0,

{vyhn — Hyon — vshy + vH} =0
{vihn — sz;l — vh, + vlex} =0

when = 0. In the above equations

PO 3 2
Un Ux_ﬁ.——vygg_vza_f, (69)
a a

ho == h,—H,,_a: —n,%

denote normal components of perturbations of velocity and intensity of the magnetic field.

Equations (68), applicable to surface disturbances of various types, permit determination of
transitions by different means than were used in the previous section. Perturbations of a tan-
gential disturbance are investigated below as an example. The results of this investigation are
further used in the study of stability of a tangential disturbance with relation to small perturba-
tions. In the case of a tangential disturbance, the steady state motion satisfies conditions (32)
to (34):

=0, H:=0, {p+4-} =0, (70)
and the system of boundary equations (6) may be reduced to the following:
{ha} =0;  {pva} =0; )
{P+ 2 i+ Hib} = 0;
(5 +w+ 4o )orn— 4 (W H) o} = 0 ? (1)
{pvyv; — —4—1“- H,,hﬂ} =0 {pv,v;. — -,‘11; thn} =0,
(Vyha — Hyon} = 0;  {vhn— H,on) = 0.

Since the quantities Ak, and pv; are continuous, the last five equations may be rewritten:
v? H? ’ 1 .
{7 + w - Zn_p_}pv" == {vH} hy;
g 1 . HU b k- 72
@i evn = 7z (H) hai {=2feon = (o) ho; (72)

, 1 H, )
(0 % = 4= (Ha hei { = oon = (0} B
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When parameters of a nonperturbed surface are known, the system of equations(72) contains five
equations for two unknown quantities pv, and hn . Since the system is over-determined. only a
trivial solution is possible: h, = 0 and pv, =0 . Thus. in the general case of arbitrary
v,Hand p , the tangential disturbance with small rerwrbations will conserve its form, and
boundary equations will assume the following form:

N N SN S
ln=vx——a‘—_ VE—Z;E—O,
hn=he—H, 52— H, 52 =0, (73)

{P' + 4—17" (Hyhy +thz)} = (.

However, with some special values of the parameters of a ronperturbed disturbance of equation
(72), there are possible some nontrivial solutions for h, and Un. The values of these par-
ameters characterize the transition disturbance, since even a small perturbation may cause
a tangential disturbance to change into another type. Inde ed, a disturbance where hn#0Oor
vy 5= 0 cannot be classified in the tangential type. Equations (72) permit the solution where
h, = 0, but where v, =0 , the original disturbance will satisfy the following conditions:

H {H
=0 =0 {Zp=0 [Zel_y
H ' (74)
Lot =0
As shown in Section 3, the above discontinuity is thermodyna mically possible.
If in the original tangential disturbance
{r} =0, (75)
then equations (72) permit h, and v;. to be different from zero if:
1 , 1
Oy} = +—= {H,}; {v:}) = 4+-— {H,}.
{ y} LI VTTIP { _‘U}) { l} —_ ‘/4—1“) { 2} (76)

The above shows that a coordinate system may be selectec in such a manner as to satisfy the
following equation on both sides of the surface:

H
v =4 .
= Vs (77)
From conditions (71) and (72) it follows that:
H?
{w+m}=o and  {e} = (. (18)

Such a disturbance [refer to equation (60a) ] is the transition between a tangential and magneto-
hydrodynamic wave. The perturbation of such a disturbance will satisfy the conditions:

{v;x} =0; {ha} =0; {P’ + 7:; (Hyhy +thz)} =0 (79)
and
’ + h." ’ aE N hx
Vp = + and v, 7=:L_V_4;p. (80)
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It follows from the above that even an arbitrarily small normal component of the field intensity
will change the disturbance into a magnetohydrodynamic wave. Finally, if in the original tan-
gential disturbance

{p}+0, (81)

then equations (72)will permit a nontrivial solution for %, and v;. in a case where the motion is
planar, i.e.

vz=0, Hz=0 (82)

and the following conditions exist:
1 (H .
o) = 4= {22} (Ho:

ot H? (83)
o+ v+ 5} () = 0l ().

Indeed; with the selection of the coordinate system where v, = 0 and v, =0 , it will be found
from (72) that with hn, 5=0 and v, 0 :

(H} = 0; {HT} =0,

The above and condition (81) lead to equation (82). Excluding k., and pv:. from the remaining
equations (72), we get equations (83). The disturbance, determined by conditions (70) and (81) to
(83) as shown in Section 3, is the transition between a tangential and an inclined shock wave.
From equations (71) and (72) for small perturbations of such a disturbance:

. , 1
(o} =0, (ha} =0, {p'+ gz Hy} =0 (84)
and
, {H,}
Pvn=4_"{T:} ne (85)

It is convenient to transform equations (83) to a system of coordinates where:

_H ), H ()

v = 1 {i}' 2 — P2 {—FL}- (86)
4 P
In such a system of coordinates, conditions (70) and (83) will assume the following form:
1 |H _
be=0; Hem O (0= o |2} (H,)
. (87)
] V.
b+ oo, {3+uf=0.
1t also follows from equations (85) and (86) that:
v, v, v, v
h"n th hﬂ: Hln ( )

i.e. the motion takes place along the force lines. This means that the discontinuity changes into
a inclined shock wave, and the coordinate system (86) corresponds to the system of coordinates
(43).
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Thus, the investigation of perturbed limiting equationis leads to the same results in relation-
ship to trangitions as direct comparison of limiting equ:tions does for disturbances of different
types.

It may be noted that the existence of transition disturbances does not mean that the motion is
unstable in the sense of transfer of energy from the basic to the perturbed motion. According to
expressions (80) and (85), only a small perturbance will change the disturbance from a transition
form to another type.

SECTION 5. STABILITY OF A TANGENTIAL DISTURBANCE IN AN
INCOMPRESSIBLE MEDIUM

In the case of an incompressible medium ( p = constant), it is convenient to introduce the
following quantity for the intensity of the magnetic field:

w — H
Ve - (89)
The system of magnetohydrodynamic equations (24) will then assume the following form:
a
5 = (uV)v—(vV)u;
3 1 8
5 FEVv=— =V (p+ 5+ uV)u; (90)

divv=0; divu =0.

A solution corresponding to a tangential disturbance can be selected as the original steady
state solution for the system of equations (90). The behavior of this solution during small per-
turbations is investigated. Let the motion be described by the following quantities:

v+v, w4u, ptp, (91)

where v, w and p (where indices 1 or 2 correspond to tie investigated side of the surface) de-
pend upon both the coordinates and time and satisfy cond tions (32) to (34) for a tangential dis-

and p’ are quantities which characterize a small per-

! H
turbance. In addition, ', u'=
V 4rp

turbation. Substituting expressions (91) in equations (90} and, neglecting small quantities, the
following system of equations will be found for the perturt ations:

X~ (uV) v — (V)1

a § ’ 1 ’ ’ ’
G H OV = — SV (p 4 puw) + (V) w'; (92)
dive’ =0; divu’' =0.
The solution to the system of equations (92) on each side of the surface, where z — 0, is

found by superposition of waves:
¢ (kr—ml)’ (93)
where Kk = (ky, ky, k;) . The components of vector
ks = (0, ky, k) (94)
should be real, since otherwise the solution of equation (93) will reach infinity along the ¥ or

z axes. For perturbations that depend upon coordinates and time according to equation (93),
equations (92) will be reduced to the following:

VAl AN e
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(0 — kv)u' = — (ku) v
(0 — ko) v’ = %(p' + puw) k — (kyu) w'; (95)
=0; ku =0.
It is considered in the above that v, = 0 and H, = 0. Second equation multiplied by k& leads
to the condition:
K (p" +puu')=0. (96)

It follows from the above thateither p’ 4+ puu’' =0 , or k2 =0 . In the first case, the follow-
ing equation for w may be derived from equations (95):

(0 — kow)? — (kou)? = 0. (97)

The roots for the above are real. Since the instability may be represented only by complex
values of w, the following will be assumed:

k=0; ky= ik, (98)

The sign of k. is chosen from boundary conditions of perturbations removed from the dis-
turbance; i.e. minus in the region 1 (with x <0 ) and plus in region 2(with >0 ). It follows
from equations (95):

’ o—kv ,

V= — e W (99)
’ r P (w — kov —(k u)“ '
P tpun = —<- o s (100)

Equations (99)and(100) are combined on the surface of a tangential disturbance for regions where
<0 and >0, by means of boundary conditions (73). For solutions of the type of equation
(93), these equations may be reduced to the following:

ur, — i (ko)) & = 0;
Up, — i (Rgtty) € = 0: (101)
{p"+puu}=0;

when z = 0. The last equationdemands that the quantities A, and @ be continuous. The above
and equation (100) lead to the following condition:

(0 — Fogw))? — (k1,3 (@ — ko0)? — (koua)?
pl koul uxl = P2 kou, Ix . (102)
The condition that &z, = — Ay, is utilized here, and it is assumed that in ageneral case, densities

p; and p, are different on both sides of the dlsturbance Excluding quantities £, u, and u,, ,
and from equations (101) and (102), an equation may be found which determines p0851ble values
of w:

Pr{w—kov,)? 4 P2 (0 — Kov3)* — p1 (Kot4y)? — pg (Kou,)* = 0. (103)
Hence

= + oa ——— {p, (ko)) + p, (Kov;) + (104)

+ V(e + p2) [p1 (Ko®1)? + g (Kot2,)’]— pipe [k (¥, — v,) 7).
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Therefore, it follows that with the condition

o1 (Ro®1)? + by (Ko} — —EF2— 1k, (v, — )2 <0, (105)

one of the roots of w has a positive imaginary part, i e. there are solutions to equation (93)
which are exponential with respect to time. This denotes the instability of the original tangential
disturbance. In cases where condition (105) is not fulfilled, the original disturbance will be
stable.

Denoting the step-change of velocity in the disturbance by:
Yp =V, — ¥, (106)

and according to formula (89) it may be found that the targential disturbance is stable in relation
to the wave vector &, , if:

4 2
(Reo H L )? + (Feo H )? — "2 (Koow0)? > 0. (107)

It is apparent from the above that the magnetic field will always introduce a positive correc-
tion to the left side of the inequality, i.e. it will exert a stabilizing action on the motion. Con-
dition (107) does not depend upon the absolute value of the vector k,. With non-parallel values
of H,, H, and v, it depends upon the direction of the vector X,.The condition of stability of
a disturbance in all possible perturbations is determined by the minimum values of the left side
of inequality (107). In cases where the y axis of the :oordinate system is directed along the
step-change of velocity, then:

(Hll H,—H, Hllz)z P1Ps 2
Ll : — v ) 108
4w (HE + H?) Piter ° >0 (108)

The above shows that the contribution of the magnetic fieldis always positive with the excep-
tion of the case where vectors M, and H, have a direction which does not correspond to the
direction of the step-change of velocity. In this case, frcm condition(107), there exists a region
of such directions of the wave vector k,, where the cor:responding disturbances are unstable.
The motion with non-parallel values of H and v is generally unstable, since a deformation of
the magnetic field takes place. Of great interest is the cise where the magnetic field is parallel
to the step-change of velocity, i.e. where motion takes place along the field. In this case the
motion may be stable in an arbitrary field as shown in Section9. U M, H, and v, are
parallel, then condition (107) for all perturbations will a¢ sume the following form:

1 2 2 P1Ps
T,,(H1+Hs)>_m_’*_"'v§- (109)

22
If, however, the magnetic field and density of the mediun are the same on both sides of the sur-
face, then condition (109) will reduce to the following:

2
H 1 e
i A (110)

Since H®/8n is the density of magnetic energy, and (vj/2 is the density of kinetic energy,
then condition (110) will mean that stability of a tangential disturbance along the magnetic field
will take place when the magnetic energy of the mediumn becomes comparable with its kinetic

energy.
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An investigation analogous to the above shows that magnetohydrodynamic waves, in an in-

compressible medium, are always stable to small perturbations. In particular, the transition

. between a tangential disturbance and a magnetohydrodynamic wave will be stable. The latter may

be proved if conditions (107) are combined with equations (75) and (77), which characterize such
transitions. The condition of stability will then assume the following form:

(Kouy + Kkou,)2 > 0 (111)

and, of course, the above conditions will always be fulfilled. A small perturbation of a transient
disturbance will remain small during the subsequent period.

SECTION 6. STABILITY OF TANGENTIAL DISTURBANCES IN A COMPRESSIBLE MEDIUM

F

2

5 Using the same nomenclature as in previous sections and denoting by % = V.f_ s Uy D P
"o

the constant quantities, and also neglecting small quantities, the following equations will be
derived from the system of equations (24):

- 2 @V w = —udive' + (V)

v’ 1 ’ ’
S+ (V)Y = — —Vp — V(uw) + (uV)u';

- a‘”, (vV) e (112)
T‘Z—-}-va’:—pdivv’;

dive'=0; p =c¥".

For perturbations, whose dependence upon coordinates and time has the form ¢itr —wt) this
system may be reduced to the following algebraic equations:

(w —Ekv)u' + (ku)v' — (kv')u =0,
(@ — kv) v’ — (uw') k + (ku)w’ — %' o'k = 0;

(113)
(0 — kv)p —p(kv') = 0;
It is convenient for further consideration to denote:
w, = w— kv (114)

where w, is the frequency in the coordinate system in whichthe medium is stationary, and equa-
tions (113) can now be rewritten as:

’ 3\
wott’ + (ku) v’ — wyu % = 0;

’

2
(k) ' + o’ — 2 k

. = 0:
ke e g (115)
w? k2%,
’ 0 e .
] {(uu )= — —5_'

(ku') = 0. )
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It may be noted that due to the parallel form of vectors « and v in the plane of the tangential
disturbance where z = 0 , the vector k, = (0, ky, k;) will enter into expressions ku and kv
only with its real components. Neglecting the known steady state solutions with real values of
w, which satisfy the equation:

wf — (ko) = 0, (116)

it is found from the first two equations of the system (115) that:

r

o o O wlie — K (kgu) u

= ’ (117)
PR B — (kpu)?

[

, WY Ku—(ku)k
uw = Ve .
PR W2 — (ko) (118)

Substituting the above in the third equation of the system (1:5), the following condition of corre-
spondence will be found:

Wb — (c? + u?) K + kic? (K, u)? = 0. (119)

The above determines w, as a function of the wave vector k,.

w? = —’;— [c’ + u? i‘/(c’ + u?)? — 422 -(—k%;i] (120)

It follows from equation (120) that real values of & correspond to the real values of %,, since
the values of kv and k, are always real. Therefore, the stiady state harmonics will also corre-
spond to the real value of w, . Thus, instability may be caised only by those perturbations for
which Im (k;) == 0, and:

A= iky. (121)

The perturbation will be limited at a distance from the dis urbance, if the following conditions
are fulfilled:

Re(};) >0; Re(r,)<0. (122)

Here A, and X, relate to the regions where £<{0 and a2 >> 0 respectively. From equation
(119) we get:

4
A=k — %o —. (123)

(e + u?) wg — et (kou)?

Boundary equations (73) have to be fulfilled on the surfece of a tangential disturbance. For
perturbances of the investigated type, equation (73) will be 1educed to:
Ve + i (w— Kow)§ =0
ur— i (k,u)t¢ =0, (124)
{P" +pouw} =0
The first two conditions, according to equations (117) and (118), correspond to each other, and

therefore it is sufficient to limit the solution by the two last equations. Excluding £, the condi-
tions may be written as:
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Yx, Y (125)
ko, kow,’
clp1 + Pyt Uy = Capg + pattytes, (126)

Excluding by means of equation (118) the values of w4’ and p’, it will be found that:

I Ag
: = . 127
erlof — (k)] ea (0], — (koua)?) o

Substituting equations (114) and (123) in the above, and assuming that conditions (122) apply, the
following equation may be arrived at, which determines the possible values of w:

2 (0 — koo )*

k
l/ 0 (Cf + u?) (w — kovy)? — Cf (kouy)?
p1[(w — ko) — (kouy)?] -

kg _ ((‘) - ko"’?)4
O (2 4 ud) (@ — Fegn)? — cF{kquy)?

P2 [0 — Fgvp)? — (Kous)?]

(128)

From the two possible values of each of the above radicals, the one which is positive should be
selected. Thus, the investigation of the stability of a tangential disturbance in a compressible
medium will be reduced to the investigation of roots of equation (128). For some values of the
parameters

Uy Uy Vo=V, —Vy; P15 P25 C1y C2, (129)

equation (128) will not yield roots of «w having a positive real part for any value of kK, The tan-
gential disturbance, which is characterized by such values of parameters (129), will be stable in
relationship to any perturbations. In a converse case, there will exist infinitely small perturba-
tions that will result in instability.

In the limiting case where ¢, — oo and ¢; — 00, whichcorresponds to an incompressible
liquid, equation (128) may be reduced to equation (103). On the other hand, with H,= ( and
Hja = 0, i.e. during the absence of a magnetic field, a problem of simple hydrodynamics, re-
ferring to the stability of tangential disturbances in a compressible medium (Ref. (18]), will
result.

With arbitrary values of parameters (129), the general investigation of the roots of equation
(128) is made difficult by the fact that in this equation, only strictly determined parts of the rad-
icals must be selected. The solution of equation (128) leads to an algebraic expression contain-
ing tenth powers of w. This operation, however, leads to the formation of additional roots that
do not satisfy the original equation. Therefore, each squared root of the equation should be
checked as to its pertinence to the original equation. Only the most interesting cases of distur-
bances will be dealt with here, i.e.., those disturbances where the motion of the medium takes
place along a magnetic field and where the following vectors are parallel

u, U, v, and v,. (130)
By defining
e
y = cos (&, u) (131)
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as the cosine of the angle between the direction of wave vector X, and the general direction of
vectors (130), equation (128) may be written:

(132)

In the above, all real partsof the radicals are assumec to be positive. Investigation is made
of the form of the imaginary roots of the above equation wi-h vy—»0. Equation (132) with v=0,
despite the existence of a multiple root w = 0, contains c¢nly two simple real roots. Since in
equations with real coefficients the transition from a real root to an imaginary root is possible
only through a multiple root, then the imaginary roots of ejuation (132), if present, should go to
zero together with v. With small values of v , this permits us to neglect the second term under
the radical sign. Then w will be determined by the following equation:

(3= =] = () ]

The roots of the above equation are either real or imaginary depending whether the following
condition is fulfilled:

prtti + pauz — 913'9292 (v, —2,)' > 0. (134)

The above condition corresponds to condition (109), which was arrived at for an analogous
problem in an incompressible liquid. Thus, with small values of v 6i.e. for perturbations for
which the wave vector makes a large angle with the direction of the step-change of velocity, the
compressibility of the medium is not important. The abcve result is physically apparent. In-
deed, the behavior of perturbation depends only upon the projection of the step-change of velocity
upon the directionof the wave vector of perturbation, and n>t upon the absolute value of the step-
change of velocity. With sufficiently large angles, the abjve projection is quite small in com-
parison with the velocity of sound, so that the medium beh:.ves in an incompressible manner.

The above result permits us to conclude that for disturbances (130) the compressibility of
the medium does not lead to contraction of the region of instability in comparison with an incom-
pressible medium. In cases where some values of the farameters cause an instability of the
tangential disturbance in an incompressible medium, then in an analogous situation in a com-
pressible medium an unstable condition will also prevail. However, in an incompressible medi-
um, the non-fulfillment of condition (134) will lead to instibility of any perturbation; whereas in
a compressible medium the disturbance appears to be stablz in relation to some parts of the per-
turbations (not with small values of v ). The above does not generally produce instability of the
disturbances.

The case of arbitrary values of v will now be investigated. The compressibility of the med-
ium is of importance here. For disturbances in which tnhe density of the medium, velocity of
sound, and intensity of the field on both sides are equal:
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fr=p2=9p, 6 ==, yh=u=u (135)

It is convenient to utilize a "symmetrical' system of coordinates, where
Y, v,
vlz—To: 7’2=—22’ (136)
and v, is the magnitude of the step-change of velocity in the disturbance. Denoting

[ =l
ke ' e

w = and p=21’c°_, (137)

equation (132) may be rewritten as:

w — Bv)* N
1/1?( RN iz w8 (38)

[T a%) (w + gy —anv? A+ o) (0 — Bv* —anvs
(@ ) —any? = (0 — Bv)F —av? '

It follows from conditions (133) that when v— O the stable condition will assume the form of

2
H? > P% or, in terms of equation (137),

Gr T 4

a>p (139)

The region of stability can now be determined by the use of equation(138) when v = 1. This
corresponds to "lengthwise' perturbations, which are propagated along the step-change in veloc-
ity. Equation (138) can now be reduced to the simple form:

202
w4_2(1+32)w2+?“‘2ﬁ2+m=0- (140)
The multiplier, which corresponds to the following real roots, was omitted:

w=0 and w= + (« +f). (141)

The roots of equation (140) are

w=i‘/1+p2il/4ﬁz+il_ﬁ:’ (142)

whence it follows that imaginary roots are possible for two regions of parameters « and B as
shown in Figure 7.

1 —a?

a) T 01— B2 (143)

This region corresponds to purely imaginary values of w, and the transition from real to imag-
inary values of the latter, with a continuous change of « and P goes through the value of
w=20
a? — 1 2
b) FF1 > 4p2. (144)
In this region, the real part of w differs from zero, and the change from its real to imaginary
values goes through a multiple root that is not equal to zero.

The condition that determines region''a' in the limiting cases where ¢ -— oo and H=0 leads
to known conditions of instability for an incompressible medium: HY < #¥* . while for a com-

s g 2r > 2
pressible medium without a magnetic field: v, <2} 2C. Thus, condition (143) represents a
general case for a compressible medium in a magnetic field.
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A

Fig. 7. Regions of imaginary roots of equation (140) (shaded areas).

Condition 'b', however, leads to an unexpected cornclusion, namely, that in very strong
fields even a small disturbance in velocity causes instability. Moreover, squaring of both sides
of the equation for w leads to the appearanceof additional roots which do not satisfy the original
equation. These roots correspond to unlimited solutions with z = <4- o0 and should be neglected.
The investigation of the roots of equation (142) in region '"b" shows that such roots are not nec-
essary, since they do not satisfy equation (138). Thus, the region of instability of the disturb-
ances for longitudinal perturbations is determined by cond tion (143).

Two limiting cases are considered: v—» 0 and v = 1. In both cases the boundary of the un-
stable region corresponds to zero values of w . In this cisse, the symmetrical system of coor-
dinates is employed, where both positive and negative r>ots of w are present, as follows di-
rectly from equation (138). During the transition from the stable to the unstable region, the
value of w? changes from positive, through zero on the joundary, to negative in the region of
instability. Here the values of w are either real or purely imaginary. Thus, the boundaries of
stability are denoted by curves for which the value of w? changes its sign.

The change from real to imaginary values could take place through a multiple root which is
other than zero, since in the unstable region both the real and imaginary parts of w = w, + (w;
would be different from zero. Such a condition would de1iote an instability of oscillations with
growing amplitude, the dependence of which on time would be:

w; !t

e coSwyt.

However, in all investigated cases, instability of this type appears to be impossible. (In-
stability of this type is sometimes called ''super-stability’.) It occurs in the problem on thermal
convection as described in Refs. [19] and [20]. It will be further assumed that with intermedi-
ate values of v , between v = () and v = { , such instability does not appear. Thus, it will be
assumed that with intermediate values of v , the boundary between regions of stability and in-
stability («, B) may be only such curves for which w? chinges its sign. Equation (140) can be
reduced to the following algebraic equation:

cow® 4 ¢t + cut + et + ¢ =0, (145)

where coefficients ¢ are algebraic functions of the parameters «, § and v. In particular, the
constant c¢; is:

o= (? — P {2(1 =) + vV 2 — )P ' —

— P24 (1 — PB2) + VB2 (1 + B¥)] a® + 2B¢ — v23B%}. (146)
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In cases where the constant ¢, becomes zero, then equation (145) will contain a root w? = (.,

In cases where the constant changes its sign by transition through the value of zero, then the
value of w? will also change its sign, and consequently there will exist pairs of real roots which
will be transformed into a pair of complex and purely imaginary roots. In the latter case, when
the constant equals zero with afixed value of v , a curve will be determined which will form the
boundary of the region of stability. The maximum region in the plane (a,f) bounded by such
curves represents the region of instability of the original tangential disturbance. This region
will be investigated.

Equating expression (146) to zero, we get:

a? —f2=0 (147a)
and

2(1 — 822 4 ¥2 (2 — B) pY ot —

147b
_{32 (4(1 _sz) + v7§2(1 +‘32)] o2 +2ﬁ4_'2ﬁ6 = 0. ( )
Equation (147b) has the following roots:
_ 40 —e)+vpr(t +8Y) + VBV V(B (1 —pY))— 8
o= 221 — B + VB (2 — BY)] p. (148)
Equation (148) determines the real curve only for the case when
2> SN (149)
Z By -

The above condition determines, for each value of v, two intervals of the values of B de-

termined by expression (148):
ﬁ2<1_2|/2(%_1) (150)
B> 1+2) 2(-},-—1). (151)

Interval (150) permits the existence of real values of B only whenthe condition 8/9 <v? <1
exists. In the region where P21, and with ¥* <(8/9 , there is only one line(147a)that serves
as the boundary of the stability region. Interval (151) with v—» 0 leads to infinity. In this case,
with all finite values of B> 1 the boundaryof the stability region will also be determined by line
(147a). Thus, with small values of v , the previously determined condition (139) may be used.

and

However, the v = 1 curve, determined by equation (148), merges with line (139) and curve
(143). Indeed, with v == 1 , the constant of (146) will assume the following form:

@ —BFP (1 +a) (1 — P — (1 —at)]. (152)

Therefore, on the straight line @ =B , the change of w? to zero will take place without chang-
ing of signs, and the following curve will form the boundary for the stability region:

(1 + a2)(1 — B2 — (1 —a?) = 0, (153)

which is in concurrence with condition (32).

Thus, with the change of ¥ from zero to plus one, a continuous deformation of the boundary
of the stability region takes place as determined by equation (148), between two end conditions
(139) and (153). For all values of v, curves (148) are limited on the left side > 1 by line
(139), and with B <1, by curve (153). Therefore, the complete region of instability is also
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limited by the same equations. Those disturbances whose parameters are outside of this region
are stable in relationship to even infinitely small perturbations.

The boundary of the stable region of tangential disturbances of velocity in a compressible
medium is shown onplane («,f) of Figure 8. It is evident that the boundary of the stability region
differs only slightly from the line a = B. Accordingto equations (137), ? = %%’- , and the cri-

X
terion of stability of a tangential disturbance of velocity in a compressible medium remains
quantitatively the same as for an incompressible medium i1 accordance with equation(110). That
is the disturbance is stable if the magnetic energy flux is comparable to the kinetic energy flux

in relationship to the motion of the medium.

Therefore, in compressible as well as incompressible conducting media, a longitudinal mag-
netic field stabilizes the motion if its energy is comparable to the kinetic energy of this motion.

a
1 4
' é
[ NN
) RN
i NN
| NN
[ N
1 . RN
1 . N
U iy yoN, T T §
7 4 \ NN \""\\
3 I8 : N2
£ R N
S \“\} A N
g:\‘: \ ] .
\\\\\\ ; S N
AN N
AN RN
7 A

Fig. 8. Region of instability of tangential cisturbances of velocity
in compressible medium (shadzd areas).

SECTION 7. THE STRUCTURE OF DISTURBANCES

Until now disturbances were considered as mathematical surfaces upon which the parameters
that characterize motion of the medium undergo a disrupt.on of continuity. In reality, the vis-
cosity, thermal conductivity, and limited conductivity of the medium cause the surface to rep-
resent a region of rapid but continuous change of these parameters. The thickness of such a
region is called the width of the disturbance. For determination of this width in equations of
motion, the dissipation terms have to be taken into account. These terms have been neglected

until now.

An investigation of a planar steady state disturbance that is parallel to the plane. z = 0 and
is homogeneous along the coordinates y and 2, (aiy- =0, a—az = 0) shall now be made. Mag-
netohydrodynamic equations (14), (17), and (22) for one-dimensional steady state motion will as-
sume the following form by integration with respect to z:
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dH
vy — v, H,—B d—zy = const;

dH
v.H,—v,H,+p d: = const;
H, = const; pvy = const;

H? 4 dv,
p+P”i+§ —(3—7]+C)g; = const;

1 dvy
PUxVy — 4—KH,H, — Mg = const;

(154)

1 dv
Poxt: — o= Hil — v d_.: = const;

v? H2 i B dH?
pvx(‘2—+w+m>—n(‘vl{)”x —_—

T % az

1 /4 v} d dT
_7(37)-1.-() d:~1—;(v;+vz)—x—d—£=const.
/

The above equations describe the motion of the medium in the disturbance: The integration
of the right hand side of equations (154) is determined from the following conditions: all quan-

tities far from the disturbance and on either side of it do not depend on =z (33; = 0) , and are

known on side 1 (z<{0) andon side 2 (z >0). Also in accordance with equations(154), the quan-
tities should be determined by relationships which correspond to general boundary equations (131)
on the surface of the disturbance.

For a tangential disturbance (vx=0, H, = 0) , equations (154) determine the following:
dH
— =0, B == 0 (155)

(since all quantities far from the disturbance do not depend upon z, it is assumed that the con-
stant is equal to zero). These conditions denote that the viscosity (7=0) and the limited con-
ductivity of the medium (B == 0) prevent the occurrence of a steady state tangential disturbance
of velocity and of magnetic field: thus, the disturbance disappears as time goes on. The dis-
appearance of the disturbance is determined by simple diffusion equations. Therefore, the re-
lationship of the velocity of disappearance of the disturbance 8/x (where § is the width of the
disturbance and 7 is the duration of its existence) to the characteristic velocity of the flow V is
inversely proportional to the Reynolds number R:

v 1

RO
« T — R

in cases where the disappearance of a tangential disturbance of velocity occurs as a result of the

action of viscosity v = 7/p ; or the Reynolds number R,,:

b o B _ 1
W T8V R,, "’

in cases where the disappearance of a disturbance of magnetic field results from the limited
conductivity of the medium.

As shown, the numbers R and R,, are very large in the majority of astrophysical ap-
plications and thus disappearance of a tangential disturbance may be neglected. Although a
steady state tangential disturbance is not possible, the above concept may be widely used in
astrophysics.
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For the case of inclined shock waves and parallel shock waves( vy, v,, Ay, H, are each zero),
equations (154) are reduced to ordinary hydrodynamic equations of one- dimensxona.l steady state
motion. In this case, the magnetic field does not exert any influence upon the motion of the med-
ium. In particular, the width of a shock wave of low intensity is determined by expression (21):

=_P!_f;;, A=—g/,—;—[3n+i——x(; - (156)
c(axﬂ)s ’

where V = 1/p isthe specific volume, and ¢, and ¢, arethe specific heats of the medium. Thus,
considering dissipation terms inthe equations of motion, the motion along the field takes place in
the same manner as in ordinary hydrodynamics. In all remaining cases, the character of motion
(including the width of the disturbance) actually depends upon the intensity of the magnetic field.
The width of a perpendicular shock wave of low intensity is taken as an example. The perpendic-
ular shock wave can be conveniently investigated in a systen: of coordinates where the quantities
ve=v and A, = H differ from zero. The system of equa‘ions (154) can now be reduced to the
following equations:

dH
UH —‘p E == vlﬂl:
pY =] = py¥n;

H? 4 d g A
pHet + 5 — (50T =p ol + 5

f (157)
vl H? dv B dH?
(g o)+ Gro—(31+ g —4 % -
v H?
—“%zf’l”l(T’“Lw')“L#”'

Here, ; is the flow flux of matter, and subscript 1 denotes (uantities that are removed from the
disturbance in the region where 1z < (0. Furthermore, it i convenient to introduce the specific
volume V = 1/p , and for the intensity of the magnetic field, the quantity

H HY
b=vm = va (158)
Equations (157) will assume the following form:
v=JV; (159)
__ B dB BB av

B_B‘_—I'VE—W—’E’ (160)

4 1 (s B?
p—p+ AV V)—(§7I+C) +—;-(W—V—‘z)= : (161)

1

S T 7 WL SN PR Y4

et | 5 - v, n V= —

2 Vi A3 (162)

6 d /B? xdT _
% dr (V’} T Az

Since disturbances of low intensity are investigated her:, the differences between the exter-

nal and internal quantities of the disturbance, p—p,, V—--V,, B— B, , etc., are small and

only up to second order terms should be taken into account. It will be assumed that 1/8 is a

quantity of the same order of magnitude as p — p,. Therefcre, the differentiation of z changes

the order of magnitude to unity. With the above assumptions, the first term on the right hand

A
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side in equations (160) may be neglected. Substituting B, for B in the second term, we get:

_ p . BB AV
B—B, =— —_,‘v; o (163)
1

The quantity H/p = }/ 4n B, expresses the "attachment' of the magnetic field to the medium and
persists during the passage of a perpendicular shock wave. Its change has a second order of

magnitude and reaches maximum inside of the disturbance.

Terms containing B in equations (161) and (162) are easily brought to yield:

1 (B B B} BB} 4v | 3B}
== —_—— | == LV — LG T4 A E T P AR 2
2 (W vf) Vi‘( ) i dz T gy V=V (164)
p B B B} 288} a4y
= twv_y 1 — V) — 1 . 165
7 i Vf( 1)+ 73 (V—Vy W (165)
i(g 2B} @y (166)
dz \v?2 ) — — V(x! dr °

Further calculations are analogous to calculations known from ordinary hydrodynamics as
shown in Ref. [21]. Multiplication of equation (161) by 1/2(V <+ V) and use of relationships
(164) to (166) will show that terms containing B will cancel and

1 d
w—w,— g (V+V)(p—p)—5F =0. (167)

The magnetic field does not contribute to the above expression. It is seen from equation
(167) that for terms of the lowest order of p— p, and S — §,:

T(S——S,):i( (168)

ar> dp
i\dp

s dr *
This means that the change of entropy inside the disturbance is a second-order-magnitude quan-
tity in comparison with the change of pressure, and thus does not depend upon the magnetic field.
Substituting equation (164) in equation (161) yields:

2
1

B
p—p1+('2——vg) V=V + 3 H W=V =
1 1

(G o]

or, substituting in the above the quantity 'V and using equation (168), the following may be arrived
at:

(169)

2
1

| (=) @)+ () o —pr

+ [1 + ( i —-—gg—) (-a%)s] (p—p)= {[(%n + C) / %}(Z—Z)S - (170)
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The left side of this equation may be transformed to become equivalent to the following equation:
1 B} \ s BY 1 gvya
] [(fz v (a-p—’)s +3y_:(—6?)s (Pp—P)(p—p2) =

(171)
o (R R A CAXEONE

Here, j is a function of shock-wave intensity p; — p,. Since terms only up to the second order
of magnitude of p— p, are taken into account, then for j=py a null approximation may be
used. In such an approximation, p = p, == ps, and the velocity of propagation of disturbance v,
in relation to a quiescent medium, is equal to the velocity of propagation of a small perturbation
whose direction is perpendicular to the magnetic field. The latter, according to equation (120),
is equal to:

[
v=_k° = |/c’+u’. (172)
where u = H/V 4xp. Therefore, in a null approximation,

J=pVc*+ud. (173)

Taking into account the equations

and

(3G =7 5w

equation (171) can be transformed into the following:

%=—%(P—P1)(P"Pz- (174)
where
i 45[(3_,,+c)(1+:—:)+p6-:7’+u}v—-;i;)] (175)

u? otV ut

Integration of equation (174) shows the dependence of pressure in the disturbance upon the
coordinate x:

p=nth BTk th(P’;“—x). (176)

In the above, z is assumed to start in the "middle" of the disturbance, i.e., from the plane
where p— ﬂ’% The latter shows that away from the disturbance, the pressure reaches

asymptotically the value of p: When z<0 , and the values of p, with x> 0. The change of
pressure takes place in a layer whose width is:

(177)
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Therefore, 8 is the effective width of a perpendicular shock wave in a case when its intensity is
small. It will be noted that 1/3 has the order of magnitude of quantities p — p;, as was assumed
above. With absence of magnetic field, expressions (175) and (177) are transformed into simple
expressions (156).

The result obtained is analogous to ordinary hydrodynamics with only this difference, that
the width of the disturbance does not depend only upon viscosity and thermal conductivity of the
medium but also upon its electrical conductivity. Moreover, the width of a strong disturbance
does not necessarily have the order of magnitude of the average path of free flow of the particles
of the medium. With small conductivity, i.e., with large values of p , the width of the distur-
bance may be significantly higher,

It should be noted, that conditions leading to the formation of a shock wave are not investi-
gated here. In cases where conductivity of the medium is so small that the condition _l_‘.>>1 is
¢

not fulfilled, simple shock waves may be created in the medium in accordance with equation (9).
The interaction between simple shock waves and the magnetic field is weak and their widths are
equal in order of magnitude to the quantity /.

SECTION 8. PROPAGATION OF PERTURBATIONS IN STEADY STATE FLOW

Equations of magnetohydrodynamics contain solutions of the elliptical type, which describes
the entire space, and the hyperbolic type corresponding to both the incoming and outgoing waves.
In ordinary hydrodynamics the character of the solution is determined by the number M = u/c .
Flows with subsonic velocities have an elliptical character, and flows with supersonic velocities
are related to the hyperbolic type. There are two numbers in magnetohydrodynamics which de-
termine the type of solution and consequently some regions of their values for which the flow is
classified as the hyperbolic type.

An investigation is made of small perturbations of uniform steady state flow. Such pertur-
bations are described by the system of equations (112), which can be reduced to the following
equation:

(5] =@ +u (5) v+ uopve]p =0 (178)

Here, D/Dt = 8/dt + (vy), and y is an ordinary operator. It is considered that the nonper-
turbed flow takes place along the magnetic field, i.e., w|H , the direction of which is selected
along the y axis. Also, considering that the disturbance is both two-dimensional (9 /dz = 0) and
steady state (0/0t = 0) , equation (178) is reduced as follows:

a2 22 \ 3%
where
o2 = (e —ul) (u? —oh) (180)

2t — ¢t — ulyt

Introducing dimensionless numbers
’ (181)

the equation for x? may be rewritten as:

o (1= M) (@ — M)

«z — M?(1 + a?) (182)
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The type of motion is therefore determined by the sign > the coefficient x?. Thus, the equa-
tion may be classified as the elliptical type where x? > (), and as the hyperbolic type in the op-
posite case. It is noted that elliptical solutions correspond to the following regions of parameters
a and M as shown on Figure 9:

a) M* < — :.’a'-: b) M1, Mi>ak o) 1< Mt (183)

With the remaining values of numbers Jf and « , the equation relates to the hyperbolic type.
Let us consider the problem of flow along a hard "wavy'" wall, given by the equation:

z =E&(y),

where

E(y) = Re (§,e*v). (184)

=

\

Fig. 9. Shaded areas denote the regions of M anda, where x* is positive.

—

It will be considered that the "waviness" is weak, i.e., §k <€ 1. Here the flow differs little
from uniform flow, and linear equations (112) or (178) ma: be employed. It may also be noted,
that any non-uniformityon the plane boundary of the surface may be represented as superposition
of the harmonics of equation (184). Therefore, the problem of flow around an arbitrary small
obstacle reduces to the problem on flow around a "wavy' wall. For solutions, which depend on
y in the form of e'*V, equation (179) reduces to the following:

o
(iz‘z —kx ’)P' =0 (185)
and will yield the following general solution:
= (C,e**= 4 Cpe—Fxx) e kv, (186)
The remaining quantities are expressed in terms of p’ in accordance with equations (117) to (119):
, e, 3
Uy = — 'P—vP ;
' u(—c?) ,
v= pv’ '
o uttcht —ctut 1 g’ (187)
Vx pv (u? — v3) ik oc’
P ut? 4ot —ctul 4 9d"
Uz = pv? (ut — v¥) ik ¢x° )
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The condition of absence of normal component of velocity, in accordance with equation (73),
should be fulfilled on the stationary boundary surface:

vy — ikvE=0 when z =0. (188)

The above condition gives one relationshipbetween the two unknown coeificients C;' and C, which
appear in the solution of the problem. From expressions (186) to (188), we find:

kxM?

The second condition for the above coefficients is easily found, when the flow is of the ellip-
tical type. In this case, x>0 and for a limiting perturbation with z = oo it should be assumed
that C, = 0. Thus,

kw3
Cy=— z__M?pEo (190)

For this case the perturbation of full pressure will be determined by:

P/ECZPI+ Puu,"= uz:vﬂ kPEOe—k“x+iky' (191)

The above expressions, analogous with ordinary hydrodynamics, permit the explanation of
the nature of instability of tangential disturbances. Indeed, assuming z = 0, a full pressure
perturbation on the boundary surface may be found:

u? —

P == ok (y). (192)

x

It follows that with uZ?<{»? , change of full pressure at the boundary takes place in the opposite
direction or out of phase in relationship to the disturbance of the surface. For example, where
the disturbance is positive the pressure will be lowered as shown in Figure 10. The above pro-
duces a force which tends to increase the disturbance of the surface. If the surface is station-
ary, as for example in the case of a tangential disturbance, then a small perturbation of a flat
surface will be increased. Such an effect has a purely hydrodynamic origin and derives from the
fact that in places of narrowing of the stream, the velocity increases and the pressure falls corre-
spondingly. Conversely, with u? > »? as shown in equation (192), the change of full pressure on
the boundary surface is such that a force is produced which tends to straighten out the surface.
This follows from the fact that with a sufficiently strong field (H[}/ 4xp >v) , a hydrodynamic
lessening of pressure in places of narrowing of the stream is overshadowed by the rise of the
magnetic pressure. The above is a description of elliptical flows where (x? > 0).

For hyperbolic flows, x = — i\, where A is a real number, and both terms of equation(186)
are limited by z = co. With conditions of perturbations where (A>0), i.e., for perturbations
that occur inthe same direction of flow as that of the liquid, the full pressure perturbation is de-
termined by the following expression:

P=__; "’A;"'Pkfoeﬂ(v—n)_ (193)

Fig. 10. Elliptical flow.
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Fig. 11. Hyperbolic flew.

In this case, the change of full pressure on the boundary is vutof phase by n/2 with the displace-
ment of the surface. The amplitude of the perturbation re:nains constant in space. Equal phase
lines are inclined tothe normal at an angle 9, where tg 9 = dy/dxr = X, as shown in Figure 11.
This means that with hyperbolic flow of a compressible conductive medium in a magnetic field,
a perturbation originating from some point is propagated only along the direction of the flow in-
side a cone with a = 90° — &, and where tga = 1/\.

SECTION 9. STEADY STATE MOTION OF AN IDEAL MEDIUM

With steady state motion (3/dt =0) , the system of magnetohydrodynamic equations (24)
for a medium whose conductivity may be considered inf nite and whose viscosity and thermal
conductivity may be neglected reduces to:

rot [vH] = 0; (194)

div H = 0; (195)
—:—Vp-}-l‘—,lt;[ﬂrotli]—[vrotv] -2 Ve =0, (196)
divpw = 0 (197)

vVs = 0. (198)

Equation (194) is equivalent to the condition:
[vH) = grad ¢, (199)

where ¢ is an arbitrary function of the coordinate systen. Since with an infinite conductivity
E=— 71;- [vH] in according with equation (30), then the electric field should be devoid of

eddies: E = — grad c’e. Obviously, ¢’¢ is simply the potential of the electric field. From con-
dition (199), vectors v and H in steady state motion shculd be perpendicular to the gradient of
the potential, i.e., vector lines v and H should lie on equ .potential surfaces of the electric field.

First the flow of an incompressible liquid will be investigated. From equations (194) to
(198) it follows that:

rot [vH] =0; (200)
div H =0; (201)
dive = O; (202)

1 1 ]
—p—Vp+m[HrotH]—[vrot,v]+V—2-=0. (203)
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Exclusion of pressure from the above system of equations will yield:
1
rot{wrotv)-—m(ﬂ'rotlil} =0, (204)

Equations (200) to (202) and (204) determines © and #H as a function of coordinates. The
solution for the above is:
H
V= Véxp ’ (205)

where one of the quantities may be an arbitrary function of the coordinates and satisfies condi-
tion (201) or (202). The pressure is determined from equation (203), or by the use of equation
(205), from the following:

H3
v (P + E{) =0, (206)
which shows that along the entire space,
HZ
P+ g7 = const. (207)

Equation (205) is an exact solution of magnetohydrodynamic equations which correspond to
steady state motionof a medium along an arbitrary magnetic field with a velocity that depends on
the intensity of the field. It is convenient to represent such motion by "'tubes' of current which
correspond to the force "tubes' of the magnetic field. The interaction of neighboring tubes takes
place through transverse pressure P = P —I—H“/&r. There are possible surfaces of tangential
disturbances upon which all quantities may undergo arbitrary step-changes as long as condition
(207) is fulfilled. In particular, flow of any form may be realized as long as it is limited by the
surface of the tangential disturbance of the field, velocity, and, in a general case, density.
Applying the criterion of stability (107) to such a discontinuous solution, the condition of stability
according to equation (205) will assume the following form:

Vo (ko HL) + Vo (koHp) 2> 0. (208)

Thus, dynamically stable steady state flows of a conductive medium along the force lines of
an arbitrary magneticfield are possible in the form of separate jets or streams. From the point
of view of ordinary hydrodynamics, such motion would be impossible for two reasons. First, the
motion of a stream in ordinary hydrodynamics, with the absence of any external forces, is along
a straight line. Secondly, due to the absolute instability of tangential disturbances, the stream
will rapidly become turbulent and will mix in the ambient fluid.

In the solutionof equation(205), the magnetic field and the velocity of the medium are related
by the same correspondence which is found in the perturbation quantities of the wave of Ref. [7]
which is propagated along an external magnetic field. In cases where the density both inside and
outside of the stream is equal, then the solution to equation (205) may be considered as a limiting
case in a magnetohydrodynamic wave with the absence of an external magnetic field. The same
conclusions follow from the results of Section 3, above. Namely, with a continuous density, a
disturbance on both sides of which the condition (205) is fulfilled is a transition between a tangen-
tial disturbance and a magnetohydrodynamic wave. Also, by difference with the magnetohydro-
dynamic wave, the solution of equation(205) may describe a motion where the density goes through
a discontinuity: for example, motion of a stream in a medium of a different density. In addition,
the solution to equation (205) can be applied, under some other conditions, to a compressible
medium.

The steady state motion of a compressible medium takes place according to equations (194)
to (198). The conditions under which these equations permit a solution in the form of equation
(205) are here established. Such a solution always satisfies equation (194). Substituting equa-
tion (205) in equation (197) yields:
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i = i H oy, —
div (H Vp) V;leH+2V; p=0.

Since div H = 0, then
HVP = 0, (209)

i.e., the density of the medium should remain constant along force lines of the magnetic field.
Taken with equation (198) this denotes that along the force lines all remaining thermodynamic
functions should be constant:

HVp = 0. (210)

Also, equation (196) will be reduced to the condition:
H?
V(p+§>=0 (211)

or, by considering equation (210):
HVH? = (. (212)

It may be deducted from the above that the intensity of the riagnetic field does not change along
the force tubes, that the cross section of force tubes is cons:ant, and that the motion along them
takes place with a constant velocity. Thus, in a compressible medium, the solution to equation
(205) may be realized in the form of uniform motion of the medium along force tubes of the mag-
netic field, the cross section of which does not change. All remaining conclusions, including the
possibility of occurrence of tangential disturbances, remain the same as for an incompressible
medium,

SECTION 10. POSSIBLE ASTROPHYSICA L, APPLICATIONS

At the present time, the information available onthe dynzmics of anionized gas in a magnetic
field is quite limited. According to the evaluations of Ref. [9], magnetohydrodynamic effects
should play an important role in the dynamics of interstella: gas, stellar atmospheres, and in
particular the atmosphere of the sun. The investigation of niotion of interstellar gas masses is
made difficult by the fact that notable changes in these objects take place very slowly, which does
not permit the gathering of a sufficient quantity of data. On the other hand, the atmosphere of the
sun presents a different picture. Here, the motions develo. relatively fast, giving rise to the
possibility of gathering sufficient data during relatively short periods of time and of observing the
character of these motions. In this respect, most promisinz are investigations of solar protu-
berances, which are characterized by gaseous formations on the boundary of the chromosphere
and the corona, and which in turn result from the activity of :he sun.

The phenomenon of protuberances is very complicated since it develops in a gravitational
field in the region of large non-uniformities of temperature znd density. It is enough to say that
the adopted classification of protuberances on the basis of their external signs and solar spots
(Ref. [22]) includes six classes and seventeen sub-classes. However, as shown by Refs. [23]
and [24], three basic classes may be distinguished in the pratuberances: 1) eruptive; 2) orderly
or electromagnetic; and 3) chaotic or turbulent. Detailed description of these classes shows that
the dynamics of protuberances cannot be explained from the point of view of ordinary hydrody-
namic concepts. Therefore, a hypothesis was proposed to determine the function of the electro-
magnetic field. This was done in Refs. [23] and [24]. The arguments in favor of this hypoth-
esis are as follows:

1) trajectories of the protuberances quite often have a regular form which resembles the
picture of force lines of a magnetic pole;
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2) protuberances are closely related to sunspots, which possess strong magnetic fields;

3) complex forms of protuberances remain for extended periods of time in an equilibriym
which does not appear to be hydrostatic.

The electromagnetic hypothesis has been made in aquite general form and there are no con-
crete results. It is shown below that the use of this hypothesis inthe framework of magnetohydro-
dynamics permits the explanation of some characteristic motions of protuberances and the eval-
uation of related magnetic fields.

At the present time, there is an absence of data permitting any evaluation of the sources
which cause the appearance of protuberances. The formation of protuberances is closely related
to solar activity and apparently may be explained by processes taking place in the inner regions
of the sun. Therefore, the discussion will be limited to the evaluation of some characteristics of
motion of the protuberances without the investigation of their sources.

Since protuberances develop in those layers of the sun's atmosphere possessing high conduc-
tivity (8 =~ 10%3) and, in addition, are related to solar spots, which in turn possess strong mag-
netic fields (up to 3500 oersteds), it may be expected that their motion occurs in accordance with
the laws of magnetohydrodynamics.

The protuberances of the second class are easiest to interpret in terms of the ""magnetic
hypothesis". Such protuberances possess the following properties as listed by Ref. [24]:

1) the motion of matter takes place longitudinally along curved, discreet trajectories that
are fixed in space;

2) the direction of the motion depends only on the distribution of such trajectories and does
not have a direct relationship to the upward or downward direction relative to the surface of the
sun;

3) such trajectories exist for prolonged periods of time without noticeable changes, and the
motion along them is repeated;

4) in most cases the motion along such trajectories is uniform;
5) the cross section of streams and jets is approximately uniform along their length,

These properties correspond to the properties found in the last section for a steady state
solution of magnetohydrodynamic equations. Actually, in compressible medium, such as the
solar atmosphere, the solution

H
V 4np

v= 4+ (213)

exists, if the density and the absolute values of the magnetic field intensity and of the velocity do
not change along the force lines. This means that the cross section of the stream, correspond-
ing in its form to equation(213) and corresponding to the force tube of the magnetic field, remains
unchanged and the motion is uniform. This, in turn, corresponds to the properties of the inves-
tigated protuberances. The possibility of analyzing this as a steady state phenomenon follows
from the above-mentioned property 3) of repeatability of motion along the same trajectories.

It will be noted that equation {213) shows only general properties of the dynamics of protu-
berances. Such phenomena as burnout of protuberances by radiation of the corona, their lumi-
nescence, etc. are not considered here. The latter are secondary effects, related to the dis-
placement of matter from one layer of the solar atmosphere to another. It is important to note
that calculations of the velocity of protuberances that are based upon measurement of velocity of
nodes and other luminescent details may not correspond to the actual velocities of the matter, in
cases where the process of illumination is propagated along the trajectory with a velocity differ-
ent from the velocity of the matter.
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In real conditions, the requirement that the density and intensity of the magnetic field should
be constant along the stream is too severe. However, it niay be expected that small changes in
this condition will not radically change the character of the motion.

Expression (213) permits the evaluation of the magnetic field intensity related to protuber-
ances of the investigated class. Assuming the average density of matter in protuberances to be
10-14 gm/cm3, it will be found that, for a steady state mot:on of matter along force lines of mag-
netic field with observed velocity of 30 to 300 km/sec, the intensity should be equal to 1 to 10
oersteds. It follows from the observations of Ref. [25], thzt the surface of the sun contains local
fluctuations of the magnetic field that reach 30 oersteds. It is possible that these chaotic mag-
netic fields are related to the motion of the protuberances.

An important property of solutions (213) for streams or jets is the stability of the surface
separating the stream from the remainder of the gaseous masses during abrupt changes of
velocity. Since such a surface may be considered a surface of a tangential disturbance, its
stability follows from the results of Sections 5 and 6. The stabilizing action of the magnetic field,
explains the fact that jets and streams observed in the protuberances conserve their form for a
long period of time. From the point of view of ordinary hydrodynamics, however, they should
be transformed intoturbulent streams in a matter of a short time and should mix with the ambient
medium.

Thus the steady state solution of magnetohydrodynamic equation(213), taken with the results
of investigations of the stability of tangential disturbances permits the explanation of a number
of characteristic features of the dynamics of protuberances. Until recently, only protuberances
of the second class were investigated, due to the regular, flow-like motion of matter. In corre-
spondence with the above, it may be assumed that protuberances of the third class are chaoticor
turbulent and develop in a region of weak magnetic field. Their motion, in accordance with
ordinary hydrodynamics, should have turbulent character. The properties of eruptive pro-
tuberances are probably determined by the conditions of their appearance, which are not in-
vestigated here.

CONCLUSIONS

The investigation of magnetohydrodynamic disturbances presented in this work leads to the
following basic results:

1. There are four types of disturbances in magnetoh'drodynamics. These depend on the
character of step-changes of velocity and intensity of the field on the surface of the disturbance:
tangential, perpendicular shock wave, inclined shock wave and magnetohydrodynamic wave.

2. All types of magnetohydrodynamic disturbances are related by mutual transitions, so
that with a continuous change of conditions of motion, a disturbance of one type may be trans-
formed into a disturbance of another type. Such transitions may take place as a result of small
perturbations of the surface.

3. A criterion has been obtained which determines tie stability of tangential disturbances
in an incompressible medium. This criterion shows that a sufficiently strong magnetic field,
parallel to the direction of the motion of the medium, stabilizes the tangential disturbance.

4. Regions of parameters have been found that characterize tangential velocity disturbances
in a compressible medium with the presence of magnetic field. In such cases the surfacedistur-
bance is stable.

5. In both compressible and incompressible media, the stability of motion takes place when
the density of the magnetic energy reaches a value equal to :he density of the kinetic energy of the
relative motion of the medium.
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6. An expression for the width of a perpendicular shock wave of low intensity has been ob-
tained. This expression shows that low conductivity of the medium may lead to a significant
widening of the shock wave in a strong magnetic field.

7. A problem onthe flow around small obstacles in magnetohydrodynamics was investigated.
It was shown that the character of propagation of perturbations in steady state flow in a com-
pressible medium is determined by two dimensionless parameters: v/c and M /c Y 4np. De-
pending upon the values of these dimensionless parameters, the flow may be classified as either
the elliptical or the hyperbolic type.

8. It was shown that magnetohydrodynamic equations for incompressible media permit an
exact solution of steady state equations of the form:v = +H/ ]/ 4ﬂp,wherep = constand H is
an arbitrary magnetic field. Such solutions exist for a compressible medium with the conditions

HVp=0and HVH? = 0.

8. The steady state solutions to magnetohydrodynamic equations taken with the results of
investigation of stability of tangential disturbances permit the explanation of some characteristics
of motion in the solar atmosphere, i.e., regular motion in solar protuberances.

In conclusion, I should like to express my deep appreciation to Professor S.Z. Belen'ko

for the introduction of the topic of this problem and for his valuable advice in the evaluation of
the results.
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